Origin of the Elements or Elements of the Origin

William Parke Physics GWU

Near the Beginning

around

13.7 billion years ago,

 $t=10^{-43}$ seconds,

the 'Planck time'

 $(\sqrt{G \hbar/c^5})$

Quantum Fluctuations dominated Space-Time

The Universe might have been not much bigger than the Planck Length $r \approx 10^{-32}$ cm

Lots of Energy but no matter!

The energy could have been contained in a massless scalar field and the tension in space-time

The scalar field can cause a period of exponential expansion, 'Inflation', of the Universe from 10⁻³²cm to 1cm!

Inhomogeneities 'washed out' to 1 part in 10⁵

(superstring fluctuations also inflate)

Cosmic Background Explorer COBE (1992) and Wilkinson Microwave Anisotropy Probe (2003)

WMAP of Universe

Scalar field undergoes phase change:

Quantum Condensates

Super-heavy Bosons
Gluons, Photons, Weak Bosons,
Leptons, Quarks,
Baryons, Mesons

Structure Particles: Quarks and Leptons

	Q	M(GeV)
d	-1/3	0.006
u	2/3	0.006
S	-1/3	0.200
С	2/3	1.5
b	-1/3	5.1
t	2/3	178.

	Q	<i>M</i> (MeV)
$v_{\sf e}$	0	<0.003
е	1	.511
$ u_{\mu}$	0	<0.19
μ	1	105.66
$ u_{ au}$	0	<18.2
τ	1	1777.

Interaction Generated by 'Gauge Bosons'

Particle	Symbol	Mass (GeV)
Super-heavy	X	~10 ¹⁵
Higgs	H ⁺ , H ⁰	117.
Gluons	G	Zero
Weak Bosons	W [±] , Z ⁰	80.42, 91.19
Photons	γ	< 2x10 ⁻¹⁶ eV

By the elapse time of $t=10^{-6}$ seconds. most baryons and antibaryons annihilated. 1 in a billion left as neutrons and protons "Radiation Era" Plasma of γ , ν , $\overline{\nu}$, e⁻, e⁺, p, n Temperature about 10¹²K

Expansion continued more gently $R \propto t^{1/2}$, $T \propto t^{-1/2}$

At *T*≈10¹¹K, (10⁻² sec) neutrinos decouple from matter

Below *T*≈3x10¹⁰K
deuterons
stick together to make Helium-4

At $T \approx 10^9$ K (190 seconds), positrons annihilate with electrons to make photons $e^+ + e^- \rightarrow \gamma$

Neutrons taken into Helium or decayed.

Left: γ , ν , $\overline{\nu}$, e⁻, p, He⁺⁺(23% wt)

(He abundance sensitive to neutron lifetime, $\tau_{1/2}$ =10.23 minutes, and number of species of neutrinos, N=3 from Z⁰ decay!)

Beginning of 'Matter Era' t = 380,000 years, $T \approx 5000 \text{ K}$

Matter 'decoupled' from radiation when neutral atoms formed.

(Visible Matter 4%, Dark Matter 23%, Dark Energy 73%)

Background radiation predicted by Gamow and Alpher (1948, GWU)

Residual Background found by Penzias and Wilson in 1965 COBE 2000 data:

'Stability Gaps' at A=5 and 8 stopped primordial nucleosynthesis

											¹² N -1.96	¹³ N -2.00	14N 99.63	15N 0.37
							8C	°C	¹⁰ C	¹¹ C	¹² C	13C	¹⁴ C	¹⁵ C
							-20.7	-0.90	1.29	3.09	98.9	1.1	11.26	0.389
						⁷ B -21.4	*B -0.113	⁹ B -18.1	¹⁰ B 19.9	¹¹ B 80.1	¹² B 3.08	¹³ B 3.02	14B 2.92	¹⁵ B 2.73
					⁶ Be -20.3	⁷ Be 6.66	*Be -16.1	⁹ Be 100	¹⁰ Be 13.7	¹¹ Be 1.14	¹² Be -1.26		¹⁴ Be -2.40	
				⁵ Li -21.5	⁶ Li 7.5	⁷ Li 92.5	⁸ Li -0.076	⁹ Li -0.752		¹¹ Li -2.09				
		³ He .000138	⁴ He 99.9	⁵ He -21.1	⁶ Не -0.093	⁷ He -20.5	⁸ He -0.924							
¹ H 99.985	² H 0.015	³ H 8.59												
¹ n 2.8				Î			Î							
	k .	<u> </u>			14 - 1-1 - T-1 -		<u> </u>		1. [1	<u></u> '	<u></u>		1	

Stable Element Relative Abundance

Unstable Element LOG (Lifetime [sec])

Primordial Abundances of Light Elements

Element	Mass Fraction, observed	Mass Fraction, theory
^{1}H	0.75	0.76
^{2}He	$(2.5 \pm 1.5) \times 10^{-5}$	2.46×10 ⁻⁵
^{3}He	$(4.2 \pm 2.8) \times 10^{-5}$	4.2×10 ⁻⁵
⁴ He	0.23 ± 0.02	0.23
6Li	$(320 \pm 200) \times 10^{-12}$	160×10 ⁻¹²
^{7}Li	$(4800 \pm 3000) \times 10^{-12}$	270×10 ⁻¹²

Data from spectroscopy of Population II (old) stars and gas

Time and Temperature

t = 200 million years

Galaxies and Stars form

Rate of heavier element production strongly dependent on nuclear stabilities, resonances, temperature, and Coulomb barrier

Essence of Stellar Dynamics

Baryon, Lepton, Charge, & Energy Conservation

$$\frac{dL(r)}{dr} = 4\pi r^2 \rho(r) \varepsilon(\rho, T)$$

Local Mechanical Equilibrium

Local Thermal Steady-State

Equation of State

$$p(r) = \frac{k}{\mu} \rho(r) T(r) + \frac{4\sigma}{3c} T(r)^{4}$$

Radiation flow

$$\frac{dT(r)}{dr} = -\frac{3\kappa\rho}{4\sigma T^3} \frac{L(r)}{4\pi r^2}$$

Convective flow

$$\frac{dT(r)}{dr} = (1 - \frac{c_v}{c_p}) \frac{T(r)}{p(r)} \frac{dp(r)}{dr}$$

Element Production in Stars

Reaction rate per unit number density:

$$\langle \sigma \ v \rangle = \sqrt{\frac{8}{\pi \mu (kT)^3}} \int_0^\infty \sigma(E) E \ e^{-\frac{E}{kT}} dE$$

Maximum rate:

$$E_{o} = \left(\frac{\sqrt{2\,\mu}\,\pi\,e^{2}Z_{1}Z_{2}\,kT}{\hbar}\right)^{2/3}$$

Jumping the A=5 & 8 Barrier

Beryllium-8 resonance predicted by Fred Hoyle from Carbon production via $^8\text{Be}(\alpha,\gamma)^{12}\text{C}$

Resonance was later found.

Too short lived to help in early universe production.

Oxygen production: Subthreshold resonance in

$$^{12}C(\alpha,\gamma)^{16}O$$

Time Scales for Element Production in Stars

Hydrogen burning: 1 million to 20 million years

Helium burning: 100 thousand to 100 million years

Carbon burning: 500 to 1000 years

Neon burning: 1 year

Silicon burning: 1 day

Iron made from excess neutrons in reactions such as 22 Ne(α ,n) 25 Mg

Supernovae Element Production

Flux of excess neutrons, e.g.

$$^{12}C(p,\gamma)^{13}N(e^+)^{13}C(\alpha,n)^{16}O$$

and neutrinos

$$p + e \rightarrow n + v$$

convert lighter elements to heavier ones in a matter of seconds to days

Abundances of the Elements

